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Spatial and temporal discretizations are key factors deciding the optimal use of

computer resources in groundwater and overland 
ow models. The discretization

should be su�ciently �ne to describe the solution with a reasonable resolution, and

prevent excessive numerical errors. An excessively �ne spatial and temporal discretiza-

tion could be very expensive because of the computer storage cost and the running

cost. The optimal resolution of a model also depends on the intended use of the so-

lution, and the types of stresses on the model. The study is aimed at understanding

numerical errors and run times of overland and groundwater 
ow models simulating

the a�ects of internal and boundary stresses caused by well pumping, canal level 
uc-

tuations, rainfall, etc. under steady and unsteady conditions. The results are used

to understand and apply existing and new groundwater and overland 
ow models to

simulate hydrology at regional and local scales in South Florida.

Fourier analysis of the linearized governing equation is used in the study to obtain

analytical expressions for numerical errors and run times. Numerical experiments

carried out with the MODFLOW model (McDonald and Harbough, 1984), and a

number of implicit and explicit models show that the analytical expressions can be

used to compute errors and run times accurately. These expressions use dimensionless

parameters so that the results can be used for other modeling applications too.

Examples are shown to demonstrate the use of the results.
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INTRODUCTION

The number of computer models used to simulate various overland 
ow and ground water 
ow

conditions has increased recently due to the increased environmental, agricultural and develop-

mental interests. South Florida is one such area in which models of di�erent scales are used for

planning, management and regulation of water resources. In South Florida, regional models are

used mostly in planning and management of water resources while medium and small scale models

with county-wide and local coverages are used in regulatory and permitting functions. The multi-

agency e�orts to implement the restoration of the Everglades also has increased various modeling

e�orts. As a result of the multiple and overlapping use of models, interest has recently grown

over understanding and proper application of them, and the interpretation of their results. The

current study is aimed at understanding the relationship of spatial and temporal discretizations

to the numerical errors and run times. Both steady and unsteady cases are investigated. South

Florida is used as a test area for many of the methods developed.

Most of the ground water and overland 
ow models are developed around a numerical method

solving the parabolic partial di�erential equation which is sometimes referred to as the di�usion

equation. Di�usion 
ow models of varying resolutions are used to look into hydrologic processes

at di�erent scales. Numerical models of any scale contain uncertainties due to uncertainties in

the input, the parameters, and the algorithms. Input uncertainty is due to inaccurate or sparse

spatial and temporal input data such as rainfall, and evapotranspiration. It can be reduced by

improving the density of the data collection network and increasing the data quality. Parameter

uncertainty is mainly due to inaccurate parameter values used to represent spatially varying phys-

ical characteristics. This error can be reduced somewhat by calibration (Lal, 1995). Numerical

errors are considered to be the source of algorithm uncertainty in the study. Various uncondition-

ally stable numerical methods using implicit or other methods have made it possible for modelers

to use almost any discretization with computer models. Unlike in explicit methods where there is

some error control because of the stability condition, implicit models such as MODFLOW need

guidelines to select discretizations so that the error becomes known and controllable.
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Many rules of thumb have been used in the past to determine both spatial and temporal

discretizations so that the physical domain and the time variations of the solution can be rep-

resented su�ciently accurately. There have also been model applications in the past in which

the discretizations are decided simply by the availability of data without regard to numerical con-

siderations. Initially, model discretization was studied simply by analyzing the truncation errors.

Based on these studies, Richtmyer and Morton (1967) compiled many of the basic developments

behind consistence, convergence and stability of parabolic and other problems. In many of the

early applications, the primary method of numerical error control is by adhering to a discretization

satisfying the stability conditions derived using Von Neuman and other methods. Run time and

numerical error were not directly used to formulate discretizations in many early applications.

Error analysis of partial di�erential equations was initially limited to an order-of-magnitude

analysis. Error control is however commonly used in solving initial value problems involving or-

dinary di�erential equations, as in the Runge-Kutta-Fehlberg method and the Adams variable

step-size predictor-corrector method (Burden and Fairs, 1985). To control numerical errors in

MODFLOW applications, Anderson and Woessner (1991) suggested empirical methods based

on model convergence. Hirsch (1989) used a method for error analysis based on linearization

and Fourier Analysis. This method which is similar to Von Neuman method for stability analysis

has been used for di�usion and other equations. Lal (1998) used the same method with ad-

ditional expressions derived for computational time to evaluate and compare the computational

performances of various numerical models used to solve di�usion equations. The subject of error

analysis and output evaluation has become increasingly important because the space and time

discretizations used in many model applications are often not small as required by the �nite dif-

ference formulations. The use of unconditionally stable implicit methods has also complicated

the use of stability condition as an error control. The current study extends the ideas of Fourier

analysis used by Hirsch (1989) and Lal (1998) to develop expressions for numerical errors of many

ground water 
ow and overland 
ow models.
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Numerical errors are introduced when the solution to the governing partial di�erential equa-

tions is represented by discrete values in the model, and when these discrete values are used in

numerical computation related to the �nite di�erence method. Numerical errors are classi�ed into

three di�erent types in this paper. Stresses and errors due to conditions such as changing water

levels in canals, changing pumping rates in wells, and changing rains are analyzed separately in

the study. Principle of superposition makes it possible to combine these results and apply to

many practical problems. The error analysis in this study is carried out for an arbitrary Fourier

component and the steady state. The results are presented in dimensionless forms so that they

can be used in a variety of problems. They are veri�ed using MODFLOW and other models.

They include expressions for computer run time, numerical error and data storage requirements

in terms of various discretization parameters. Results of the study are useful in understanding

the output of existing models, and providing guidelines for designing future models.

NUMERICAL SOLUTION OF THE DIFFUSION EQUATION

Two dimensional groundwater 
ow and overland 
ow can be explained using the following gov-

erning equation. For overland 
ow, the equation is derived by neglecting the inertia terms in the

St Venant equations. (Hromadka and Lai, 1985, Lal, 1998).

@H

@t
=

@

@x

 
K
@H

@x

!
+

@

@y

 
K
@H

@y

!
+
S

sc
(1)

in which, H = h+z = water level or water head; S = source and sink terms representing rainfall,

evapotranspiration and in�ltration. For overland 
ow, h = water depth; K = h
5
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when the

Manning's equation is used; nb = Manning's coe�cient; Sn = water surface slope and sc = 1.

For groundwater 
ow, sc = storage coe�cient; K = Tc=sc in which Tc = transmissivity of the

aquifer, assuming an isotropic material; Tc � kc
�h for uncon�ned 
ow in which �h = water depth

of the saturated layer and kc = hydraulic conductivity. In the case of groundwater 
ow, K is

used in place of Tc=sc to simplify the derivations. The 
ow vector is computed using

~Q = Ksc
~rH (2)
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in which, ~Q = 
ow rate per unit width. When a weighted implicit �nite volume formulation is

used, (1) can be expressed for an arbitrary cell as (Lal, 1998)

H
n+1
i;j = H

n
i;j + � Qnet(H

n+1)
�t

sc�A
+ (1� �) Qnet(H

n)
�t

sc�A
+

�S�t

sc�A
(3)

in which �A = area of the cell; Qnet = net in
ow to the cell; � = weighting factor for semi-

implicit schemes; n = time step; �S = weighted average source term for the area during the

period. For a rectangular cell, Qnet is given by

Qnet = Ki+ 1

2
;j(Hi+1;j �Hi;j) +Ki� 1

2
;j(Hi�1;j �Hi;j)

+Ki;j+ 1

2

(Hi;j+1 �Hi;j) +Ki;j� 1

2

(Hi;j�1 �Hi;j) (4)

Explicit and the implicit methods are obtained by using � = 0 and 1:0 with (3) and (4).

NUMERICAL ERROR ANALYSIS

Numerical errors are present in computer models because of their inability to represent or solve

continuous functions without digitizing or discretizing them. In the paper, numerical errors are

classi�ed into three categories.

Types of numerical errors

Numerical errors are classi�ed into the following three categorized based on the ways in which

they are introduced into a solution.

A A numerical error is introduced when the initial and boundary condition data are recorded

and provided to the model as discrete values in time and space. Due to this type of error

in "representation", frequencies in the solution above a certain value are either completely

left out, or not represented accurately.

B The second type of error is introduced when the internal discretization within a model is not

su�cient to carry the solution accurately over the entire time and the space. To understand

this error, consider a case in which the water level boundary condition data are adequately

represented in time. If the spatial discretization is not su�cient to represent the resulting

disturbance in space along its entire travel path, an error of this type is introduced to the
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solution. Similarly, even if the initial condition is represented accurately in space, a coarser

time step may introduce errors after some time.

C The computational error introduced during numerical computations carried out using the left

over frequencies in the model after steps (A) and (B) is referred to as the third type of

error. This type of error is analyzed using methods spectral methods used by Von Neuman.

Higher frequency components are subjected more to all three types of errors. Error types

(A) and (B) are introduced in general due to the inability of the model to represent continuous

solutions accurately using discrete values. These errors can be quanti�ed using an arbitrary Fourier

component of the solution. Assuming that a component can be described using its wave number

k (k = 2�= wavelength) or frequency f (f = 2�= period), the following approximate expressions

were obtained for maximum percentage discretization errors of 1-D and 2-D problems. A Monte

Carlo method �tting di�erent 1-D and 2-D wave shapes to a grid was used to obtain them.

� = 0:5
p
�d or �d = 4:0 �2 for 1-D (5)

� = 0:35
p
�d or �d = 7:8 �2 for 2-D (6)

in which, �d = maximum percentage error in discretization measured at the center of the cell;

� = k�x is the dimensionless forms of �x. The same equation applies when � is replaced with

 in which  = f�t. Quantity � was also used by Hirsch (1989) to make �x dimensionless. �d

only depends on the geometrical shape of the wave form. For 1-D problems, 1% and 5% errors

in discretization for example correspond to � or  = 0.5 and 1.1 respectively. For 2-D problems,

they correspond to � or  = 0.35 and 0.80 respectively. An easier way to visualize � or  is

to consider that approximately �
�
grid spaces or discretizations are needed to describe half the

wave length of a sine wave. It can be seen that approximately six grid spaces are needed over the

length of half a sine wave to represent it with a maximum error of 1%. Three discretizations per

half sine wave or � = 1.05 brings the error upto 4.5%. Equation (6) can also be obtained using

actual model runs (Lal, 1998). Error �d is the smallest maximum error possible with a model

using a discretization � and any time step.
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The error explained in (B) can be understood by realizing that k and f of a single Fourier

component are related as a result of the governing equations. If a �x is selected so that a certain

wave number k describing the initial condition is represented with a known accuracy, �t also has

to be selected so that f is represented with a comparable accuracy. Similarly, if �t is selected to

represent a certain frequency f of the boundary condition data, k in the solution also has to be

represented with a reasonable accuracy. Once a discretization is selected to represent a certain

Fourier component with a given accuracy, lower frequency components are automatically repre-

sented with a higher accuracy, and do not need special attention. Discretizations are generally

designed for the highest frequency or the wave number of interest. If the �, and therefore the

accuracy is known for a certain component with a wave number k, then �0 value for a di�erent

wave number k0 can be determined using �0 = �k
0
=k. If, for example, a discretization describes a

100 m wave with an accuracy of 1%, the same discretization can describe a 45 m (=100*0.5/1.1)

waves with an accuracy of 5%. The accuracy of a numerical computation cannot be better than

the accuracy at which f or k in the solution is represented. If a higher accuracy is needed from

a computational scheme, the input data should be prepared with smaller � and  values corre-

sponding to the expected high accuracy.

Closely matching pairs of �x and �t can minimize errors of type B. In order to compute an

error of type (B), a relationship between f and k can be obtained �rst for di�usion 
ow using

solutions of the form H = H0e
I(kx�ft) and H = H0e

I(kx+ky�ft) respectively for 1-D and 2-D

problems in which I =
p
�1. In the case of 2-D problems, k is assumed to be the same in both

x and y directions for simplicity. The relationship obtained can be expressed as

f = dKk
2 (7)

in which, d = 1 and 2 for 1-D and 2-D problems respectively. Numerical errors of type (B) are

created if both f and k of the solution are not represented accurately in the model.
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Computational errors

Computational errors explained in (C) are estimated using a methods similar to that used in the

Von Neuman stability analysis. In the analysis, the behavior of the numerical scheme in response

to an arbitrary i th harmonic with wave number ki =
i�
N

is compared with the behavior of the

governing equation with respect to the same harmonic. The wave number is de�ned as 2�=�

in which � = wave length. Assuming a solution domain length of length L in x direction, a

mesh spacing of �x allows a minimum wave length �min of 2�x and a maximum wave length

of 2L. In the analysis, a term �i de�ned as �i = ki�x is used to represent the i th harmonic

in dimensionless form (Hirsch, 1989). The subscript is often removed for simplicity. A term

 = f�t can be de�ned similarly to represent a harmonic in the time domain, in which the

frequency f = 2�=Tp, and Tp = wave period. � is used as the dimensionless variable to describe

the spatial discretization.

For numerical methods based on �nite di�erence methods, an analytical expression can be

derived for the numerical error (Hirsch, 1989, Lal, 1998).

� = 1� jGj (8)

in which, � = numerical error per time step as a fraction of the amplitude; G = ratio of amplitudes

of numerical and analytical solutions, or the ampli�cation factor of the numerical method.

G =
1 � 4d(1 � �)� sin2(�=2)

1 + 4d�� sin2(�=2)

1

e�d��
2

(9)

� = K�t
�x2

= non-dimensional form of �t; d = 1; 2 for one and two dimensional problems with

square grids. Equation (8) can be expanded to give

� = �
d
2
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2
+
d��

4

12
+ : : : = �

d
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4
K

2�t2

2
+
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12
+ : : : (10)

in which + and � signs correspond to implicit and explicit models respectively. The cumulative

numerical error after many time steps, �T , depends on the number of time steps nt, and the error

at each time step �. Error �T is bound by nt�, in which nt = T=�t.

�T �
�

��2
TKk

2 =
�

d��2
fT (11)
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where, k = wave number of the harmonic; T = maximum duration over which a given harmonic

stays in the computational domain and accumulates errors. Examples shown below demonstrate

how fT is computed. In the case of rainfall driven stationary water level variations, fT = �=4

because the error is largest after a quarter cycle. In the case of a traveling disturbance generated

by a change in water level, the disturbance travels at a speed of f=k, and covers a distance X in

time T making fT = kX. It is shown later that the absolute error in the problem is maximum

when fT = 1. Similarly it can be shown that fT < 3 for most practical applications.

Equation (11) can be simpli�ed if � is smaller than 1 by using a truncated Taylor series

expansion. For explicit, implicit and semi-explicit 1-D and 2-D �nite di�erence models,

�T (expl/impl 1-D) �
fT�

2

2
(�� �

1

6
) (12)

�T (semi-impl 1-D) � fT

"
�
2

12
�
�
4

12
(�2 �

1

30
)

#
(13)

�T (expl/impl 2-D) � fT�
2(�� �

1

12
) (14)

�T (semi-impl 2-D) � fT

"
��

2

6
+

2�4

3
(�2 +

1

120
)

#
(15)

The positive and negative signs apply for the explicit and implicit methods as shown. Semi-

implicit methods use � = 0.5. Explicit 1-D and 2-D models additionally require � < 0:5 and

� < 0:25 respectively. Numerical experiments will later show that o�sets of � such as 1=6 and

1=12 in (12) and (13) can be neglected specially with implicit methods using relatively large �.

Above equations also show that semi-implicit methods are second order accurate in time.

Useful ranges of discretization parameters

Equation (11) is useful in computing numerical errors for any discretization, even if �x and �t

are selected independently. However, matching pairs of �x and �t, and their upper bounds

become useful when selecting the �nal values for practical applications. A useful but subjective

upper bound for � or  in 1-D problems is 1.6 for which the error in representing a sinusoidal

component is approximately 10%. The upper bound for  places an upper bound for � which
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can be obtained using the following equation derived using (7).

� =
 

d�2
(16)

The upper bound of � is obtained for a given � by using  = 1.6 in (16). Figure 1 shows how

the upper bounds � = 1.6 and  = 1.6 place limits on the applicable range of the error equation

(11). If both k and f are to be represented with equal accuracy in a model, the corresponding

� for the "matching condition" is given by (16) with � =  . The relationship between �x and

�t under this condition is given by
�x2

�t
= dK

�
2

 
(17)

It is unlikely that many practical discretizations would support solutions in time and space

equally accurately. If the time step used in a model is larger than the matching value given by

(17), the model will represent f with a smaller accuracy corresponding to  = f�t. If the

time step used is extremely large such that  exceeds the upper bound of approximately 1.6, the

speci�c Fourier component will not be represented accurately at all, and only frequencies lower

than f corresponding to an acceptable value of  will be represented in the model. This may

sometimes create too much noise and trigger larger oscillations, specially with � close to 0.5.

Under this conditions, either �t has to be reduced to accommodate the frequency component,

or �x has to be increased to avoid it and save data space. If the time step used in a model

is smaller than that given by (17), frequencies above f = d�
2
K=�x2 can be represented using

the time step. But since there are no such frequencies, part of the data storage space is wasted.

This space can be saved by reducing the spatial discretization to �x =
q
(d�t K�2= ) derived

using (17). In these examples, discretizations were matched to make sure that resources are not

wasted by selecting unmatched � and  .

In the previous discussions, it was demonstrated that at least 6 grid points are needed to

represent a half-sine wave in the model with 1% accuracy. However, models may often have

rainfalls or stresses acting on one to very few cells at a time. When this happens, the model acts

more like a lumped parameter model for the area, and the solution become grid dependent. Under
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the condition, the solution may not accurately represent the 
ow as described by the governing

partial di�erential equations, and the analytical expressions for numerical error become somewhat

inaccurate. Consequently, the model will �lter out some of the high frequency components it

cannot represent, but still show many of the important physical behaviors. Such a model has

limited uses, but only after a proper veri�cation. Model results under such conditions have to be

interpreted very carefully.

An exception applies if the cells in the model represent actual physical cells in the �eld and the

equations governing the 
ow across cells in the model also represent actual physical conditions.

With correct rainfall and ET in the cells, the model now represent the physical system accurately,

even if it does not solve the di�usion equation. This situation is true in parts of South Florida

where large ponded parts of wetlands or agricultural areas are surrounded by levees.

LATERAL PROPAGATION OF ERRORS

When the water level in a canal, tidal bay or the ocean changes, a disturbance in head is created

which travels outward from the source of the disturbance. Water level changes due to such

stresses constitute an important part of the solution in many models. Errors in the solution

of these disturbances are also important. To understand numerical errors in such solutions, a

sinusoidal disturbance H = H0 sin(ft) is studied in 1-D. It can be shown that the analytical

solution for head in such a propagation is

H(x; t) = H0e
�kx sin(ft� kx) (18)

in which, f = 2Kk2. The analytical solution for discharge is given by

Q(x; t) =
p
2KkH0e

�kx sin
�
kx� ft� �

4

�
(19)

These equations show that the amplitude becomes less than 1%, 5% and 37% of the starting

amplitude when fT = kX > 5, 3 and 1 respectively. This shows that the waveforms become

negligible after traveling close to one cycle. It also leads to the following expression which is

similar to an expression derived by Townley (1995) and used by Haitjema (1995) for transient
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state analysis.

X
2

KTp
=

(ln�d)2

2�
or (20)

KT

L2
p

= �
ln�d
8�2

(21)

in which, Tp = period of the wave; Lp = wave length; �d = decayed amplitude as a fraction of the

original. These equations can be used to determine the length and time scales of one-dimensional

di�usion wave disturbances of period Tp or wave length Lp respectively. They can be used as

indicators to determine when the amplitude is so small that it makes no sense to compute the

error as a percentage of the amplitude for the problem. The numerical error at a distance x from

the line of disturbance is computed using (11) and fT = kX as discussed earlier.

�T (x) =
k�

��2
x (22)

This equation shows that as a percentage, the numerical error increases linearly with x. Since

water level 
uctuations decrease exponentially, the absolute error increases and decreases with

the distance, giving a maximum �T of approximately 0:37�2�, at fT = kX = 1.

The gradient of the �T versus x line given by k�=(��2) can be used to obtain � for various

computer models. These � values can be compared with the same values obtained using analyti-

cal expressions developed in the study. When estimating �T for numerical models, (18) and (19)

are used as exact solutions. These exact values are subtracted from model values to compute

numerical errors in heads and discharges. The peak and trough values of the sinusoidal variations

have the largest errors. The exact values of � for explicit, semi-implicit and the fully implicit

MODFLOW models are obtained using (8) with � = 0.0, 0.5 and 1.0 with d = 1. In preparing

the experimental setup to compute �T , the number of grid cells in the direction of propagation

was limited to 100 to prevent excessive run times. Over 200 cycles of sine waves were generated

for each experiment. Since dimensionless parameters are used, the actual physical dimensions

and physical constants used in the tests are not important.
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Figures 1, 2 and 3 show the � values computed for the ADI, explicit and the MODFLOW(PCG2)

models respectively. A range of � values such as 0.2, 0.4 and 0.8 were used in the experiments.

All the �gures show that the analytical and numerical plots of � agree very closely, implying that

the analytical expressions derived for numerical error are accurate. These results are similar to the

results shown by Lal (1998a) using a water level subsidence experiment. Figure 2 shows in dashed

lines that the error measured as the (numerical value { analytical value) is small when � � 0.16,

and becomes negative when � < 0.16. Figure 2 also shows that the approximate form of the

analytical solution in (12) based on a truncated Taylor series is also relatively accurate. Figure 4

shows the variation of the amplitude and the numerical error with distance for the MODFLOW

model. This �gure demonstrates how the percentage error increase and the amplitude decrease

with distance. The behavior of error with � and � for a problem with a triangular mesh is similar

as demonstrated in the paper by Lal (1998b).

NUMERICAL ERRORS OF FLOW VELOCITY AND DISCHARGE

In overland 
ow and groundwater 
ow models based on the di�usion equations, discharge across

two neighboring cells is

Q
n
i+1=2;j = Ksc

H
n
i+1;j �H

n
i;j

�x
(23)

in which, Hn
i;j and H

n
i+1;j are the heads of the cells; Qn

i+ 1

2
;j

= 
ow rate betweens cells per

unit width. In order to compute the numerical error in the 
ow, a solution of the form H
n
i =

E
n exp(I�i) is substituted in (23) to obtain Qi+1=2 = 2KscEnI sin(�=2)=�x. Using an analyt-

ical solution of the form H(x; t) = H0 exp(�Kk2t) exp(Ikx) in the governing equation, it can

be shown that Q(x; t) = KsckIH(x; t). The ratio between Qn
i+1=2 and Q(x; t) can now be used

to compute the approximate numerical error as

�Q = (1�G)
2 sin(�

2
)

�
(24)

in which �Q = numerical error in discharge for one time step, as a fraction of the total discharge

for the speci�c Fourier component. Numerical error in 
ow velocity and discharge are given by

the same expression. Equation 24 shows that the error in head and discharge are approximately

the same, with the former slightly higher.
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The accuracy of (24) can be veri�ed in the same way it was done for the head, by simulating

the propagation of sinusoidal disturbances in head, and observing the decay of the peak values

of the sinusoidal discharge rate with distance. Numerical error in the peak rate is computed by

�rst running a model for a long period of time, passing over 10000 cycles of waves until traces

of the initial condition no longer remain in the solution. Errors are computed by assuming the

analytical solution (19) to be exact. The gradient of the error versus distance curve is used as

before to compute �Q for the model. Figure 5 shows a plot of �Q with � for the model when � =

0.5, 1.0, and 1.5. According to the �gure, the analytical estimates of error compare well with the

numerical estimates.

NUMERICAL ERRORS NEARWELLSUNDERVARIABLE PUMPING RATES

Numerical errors of model results are large close to groundwater wells because of the extreme cur-

vature in the solution. Thiem equation provides an approximate but e�cient method to compute

water levels very close to a well when the water level of the cell is known (Anderson and Woessner,

1991). Numerical error close to a well subjected to a variable pumping rate is investigated in

this section. The results are useful in selecting the optimal discretization for a new model, or in

evaluating the output of an existing model. All the formulas are derived for an arbitrary Fourier

component of the pumping rate time series. The well is assumed to be circular, and situated at

the center of a square cell to simplify the derivations. Even if some of these assumptions may not

be true in the actual application, results of the study are useful in understanding the behavior of

numerical errors near wells.

The following equation governing ground water 
ow around a well is used for the analysis.

@H

@t
=
K

r

@

@r
(r
@H

@r
) (25)

Consider a solution in the form H = R(r)T (t) in which T (t) = exp(Ift). Using separation of

variables, (25) can be reduces to

r
2d

2
R

dr2
+ r

dR

dr
�
IfRr

2

K
= 0 (26)
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Using a characteristic length � =
q
K=f , radius r can be made dimensionless as r̂ = r=�.

Similarly, t can be made dimensionless using t̂ = ft. The general solution of (26) that is also

�nite at r̂!1 can be expressed as

H(r̂; t̂) = cKo(r̂) exp (It̂) (27)

in which, Ko(r̂) is a modi�ed Bessel function; c = a constant that is di�erent under di�erent

boundary conditions. For a sinusoidal pumping rate Q(t), c can be determined by assuming that

Q(t) is equal to the 
ow rate at the boundary r̂ = r̂w of the solution in (27). r̂w = dimensionless

well radius. This assumption is valid for most wells in South Florida where the storage capacity

of the well is negligible. Substituting this c into (27),

H(r̂; t̂) =
Q(t̂)Ko(r̂)

2�Kr̂wK1(r̂w)
sin (t̂) for r̂ > r̂w (28)

In the case of extremely small wells, r̂wK1(rw)! 1 as r̂w ! 0, and (28) becomes

H(r̂; t̂) =
Q0Ko(r̂)

2�K
sin (t̂) (29)

This analytical expression for pumping head shows that the amplitude decays rapidly with distance

as exhibited by the behavior of Ko. Table 1 shows variation of a portion of (28) as an indicator

of this amplitude. The table shows for example that when r̂ > 2:75 and r̂w =0.5 or less, the

amplitude of the water level 
uctuation will decay to less than 5% of the amplitude at the cell

containing the well. When r̂w =0.1, then r̂ > 1:95 for the amplitude to decay to 5%.

In the numerical model, the governing equation and its solution (28) are represented using

�x��x square cells. Average values of these cells are used to represent the values in the solution.

To compute the numerical error in the cell containing the well, water level at an equivalent radius

to the �x ��x square cell is obtained assuming a solution of the form (27). This solution is

compared to the water level obtained using the analytical solution given in (28) to obtain the

error. The value of c is obtained using the following equation for water balance in this cell.

�Q(t) + 2�rcK

 
@H

@r

!
r=rc

�
Z ra

r=0
2�r

@H

@t
dr (30)
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in which rc = equivalent radius of the �x � �x square cell used to compute ground water

seepage; ra = equivalent radius of the square cell when used to compute water volume. ra is

estimated using �x2 = �r
2
a. Substituting the c value obtained in (30), and assuming a pumping

rate of Q(t) = Q0 sin(ft), (27) can be expressed as

H(r̂; t̂) =
Q0Ko(r̂) sin(t̂� t̂o)

2�Kr̂cK1(r̂c)
�
sin(t̂)� Mo(r̂a) cos(t̂)

r̂cK1(r̂c)

� for r̂ > r̂c (31)

in which, Mo(ra) is de�ned as

Mo(r̂a) =
Z r̂a

0
r̂Ko(r̂) dr̂ (32)

t̂0 = a time lag. The exact solution for the water level in the cell containing the well is obtained by

using (28) at a radius r̂ = r̂c. This level is compared to the analytical estimate of the water level

from the numerical model. This analytical estimate given by (31) at r̂ = r̂c di�ers in amplitude

and phase to the exact solution. The ratio between the numerical amplitude and the analytical

amplitude Cc can be used to compute the error in amplitude using �w = 100(1�Cc). Using (31)

and (28), Cc can be expressed as

Cc =
1s�

1 +
�

Mo(r̂a)

r̂cK1(r̂c)

�2� (33)

It can be shown that �w = 0, Hc(r̂; t̂) = H(r̂; t̂) and t0 ! 0 when r̂c ! 0. To compute the

numerical values of �w approximately, r̂c = ac�x
q
(f=K) and r̂a = aa�x

q
(f=K) are used,

based on ac = 0.208 (Anderson and Woessner, 1991) and aa = 0.56 obtained for steady state

problems with square cells. Table 2 shows the values of �w obtained analytically for various values

of �x
q
(f=K). Values in the table show that the amplitudes at the cell are generally a fraction

of the analytical estimates. �w is the smallest numerical error possible with any time step, and

depends only on the spatial discretization around the well. �w can be used to select �x for a

model. The model value of the water level is interpreted as the water level at a radial distance of

0:208�x from the well. An approximate value of �t for model runs can be based on a suitable

value of  .
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Table 3 shows �w values obtained using a MODFLOW model, and the corresponding analytical

values obtained using (33). A 50 X 50 cell con�guration with a sinusoidal pumping rate was used

in the test to obtain �w numerically. About 200 pumping cycles were used to obtain the initial

conditions for the test. About 200 more cycles were used to obtain the maximum amplitude.

A small time step was selected as indicated by  < 0.08 to limit its contribution to the error.

Table 3 shows that �w values obtained analytically and numerically using the MODFLOW model

agree well, implying that the method can be used successfully to compute numerical errors in

amplitude near ground water wells. It also shows that the values of ac = 0.208 and aa = 0.56

used are su�ciently accurate. Approximate errors further away from the well are large as a frac-

tion of the amplitude, and small as a magnitude. These errors can be determined by adding the

e�ects of propagation errors computed using (11).

Table 2 shows that when �x
q
(f=K) is larger than about 1.4, the error in the cell containing

the well is more than 5%. When �x
q
(f=K) > 5,the error is larger than 43%, and the cell

size is comparatively larger than the radius of in
uence of the well. The dynamics of water level


uctuation in the well at this point are dominated by the storage of water in the cell. Numerical

error in the amplitude of surrounding cells can be computed by considering that stress propagates

outward from the center cell, and that the propagation error is given by (22). This error as a

percentage is larger than the error of the center well or �w. Linear superposition can be used to

compute the e�ects of multiple wells with steady and unsteady pumping rates.

NUMERICAL ERRORS UNDER STEADY STATE

Numerical errors under steady state conditions can be determined by using methods similar to

those used under unsteady conditions. Since steady 
ow solutions are boundary dependent, a

source term of the form S(x; y) = 2E0Kk
2 exp(Ikx) exp(Iky) is used to create a disturbance

in the solution of (1) far away from the boundaries that can be solved both analytically and

numerically. The analytical solution of the problem can be shown to be of the form H(x; y) =

E0 exp(Ikx) exp(Iky). To obtain the numerical solution, consider an arbitrary Fourier component

Hi;j = En exp(I�i) exp(I�j). Substituting this component in the �nite di�erence form of the
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governing equations, and computing the ratio of amplitudes of numerical and analytical forms,

an estimate for the percentage error in amplitude can be estimated as the di�erence between

numerical and analytical solutions.

�s = 100

 
1 �

�
2

4 sin2(�
2
)

!
� �100

 
�
2

12
+

�
4

240
+ : : :

!
(34)

in which, �s = steady state error as a percentage of the amplitude. The equation shows for

example that �s exceeds 5% when � exceeds 0.763. The corresponding values for 1% and 10%

are 0.345 and 1.064 respectively. Equation (34) can be veri�ed by making steady state runs for

conditions with steady source terms having sinusoidal density variations. Model runs showed that

the equation can be veri�ed upto 4 decimal places of precision.

NUMERICAL ERRORS NEAR WELLS UNDER STEADY STATE

Numerical errors are large near wells because of the curvature in the solution. Thiem equation is

used to compute the head distribution analytically when the water level in the cell containing the

well is known. Thiem equation is expressed as

Q = 2�Tc
H2 �H1

ln(r2=r1)
(35)

in which, Q = pumping rate; subscripts 1 and 2 represent the well and the cell value respectively.

r2 = 0.208 �x is use with square grids.

In order to represent numerical errors in dimensionless form, all the errors are normalized

against the drawdown of the cell containing the well or the "center cell". The well is assumed

to be positioned at the center of the square cell. The problem of determining the discretization

then becomes a problem in geometry, in which the error in drawdown is expressed in terms of

rI=�x in which, rI is the radial distance to a reference elevation or the radius of in
uence. The

radius of in
uence can be computed using a number of empirical and semi-empirical equations

outlined in the text by Bear (1972). For di�erent values of rI=�x, the numerical error in the

drawdowns of di�erent cells including the cell containing the well can be obtained using numerical

model runs. The drawdowns of di�erent cells are measured with respect to a point at a radial
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distance rI , and the errors are computed assuming that the same drawdowns computed using

(35) are exact. All errors are presented as percentages of the drawdown of the center cell, which

is assumed to be equivalent to a well of diameter 0.208�x. A 50� 50 cell mesh was used to

run the numerical model. Figure 6 shows the variation of the error obtained for cells at various

distances. Three levels of discretization given by rI=�x = 6 and 14 along the axis and 7 along a

diagonal are shown in the plots. All the plots in log scale follow an approximately linear behavior.

If rI=�x is less than about 7, the discretization is very coarse, and the error estimates may not be

very reliable. The percentage error in Figure 6 can be expressed using the following approximate

formula.

� = 2:07 exp (�0:726
r

�x
); �x � r < rI (36)

in which, � = error as a percentage of the drawdown in the center cell. The same equation can

be written to express the absolute error as

H� = 2:07(
Q

2�T
) log (

rI

�x
) exp (�0:726 r

�x
) �x � r < rI (37)

These equations can also be used to obtain �x for a model if the maximum error allowed at a

distance r from the well is known.

NUMERICAL ERRORS IN THE SOURCE TERM

Rainfall and evapotranspiration are considered as source terms in the equation governing overland

and groundwater 
ow. The source term is a major contributor to stress, mainly in regional models

when far away boundaries have only a limited dynamic in
uence. Stresses introduced through

the source term create water level variations that are subjected to errors during computations

associated with the source term as well as other terms. A spatially and temporally varying rainfall

pattern is used to study errors in the source term. The results for an arbitrary Fourier component

of the solution are shown.

It can be shown that a solution in the complex form H = H0 sin (Ikx+ Iky � IfIt) satis�es

the governing equation (1) if the source term describing rainfall excess (rainfall - evapotranspi-

ration) is expressed as S = scH0

q
(f2I + f

2
k ) cos (kx+ ky � fIt� 
)) in which k = the wave
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number; fI = frequency describing the rainfall pattern; fk = dKk
2, 
 = tan�1(fI=fk). The

above equation forH is used to obtain the exact solution when computing numerical errors during

the following experiments.

An analytical expression for the numerical error created by the source term is obtained by

isolating the source term �rst. A solution of the form H0 sin(fIt) satis�es the truncated equation

when S = scfIH0 cos(fIt) and di�usion terms are absent. Consider the following weighted

implicit �nite di�erence equation for the source term.

H
n+1
i = H

n
i +

1

sc
(�Sn+1

i + (1 � �)Sn
i ) (38)

Numerical error in (38) can be computed by comparing the analytical solution for Hn+1
i , which

is H0 sin(fIt+ f�t), with its numerical solution obtained by substituting Sn
i = scfIHi cos(fIt)

in (38). After algebraic manipulations, the numerical error can be expressed as a percentage of

the amplitude as

�s =

s
 
2
I � 2 I sin I + 4 sin2(

 I

2
)[1� �(1 � �) 2

I ] (39)

in which,  I = fI�t. For fully explicit and implicit methods, the expression reduces to

�s =

s
 
2
I � 2 I sin I + 4 sin2(

 I

2
) �

 
2
I

2
�
 
4
I

72
+ : : : (40)

The  I values corresponding to 1%, 5% and 10% errors are 0.448, 0.673 and 0.802 respectively.

With central di�erencing, these numbers become 1.073, 1.413 and 1.593 respectively. The

numerical error as a result of both the source term and the di�usion term can be expressed as

�Ts =
q
�
2
T + �2s (41)

in which �T is the error due to the di�usion terms alone, computed using (11).

The expression for total numerical error is veri�ed by simulating the stress induced by two one

dimensional rainfall patterns N = N0 sin (kx� fIt)) traveling in opposite directions. Value of �
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required to estimate �T is computed using � =  k=�
2 in which,  k = fk�t. Figure 7 shows the

variation of the numerical error under such source induced 
ow for two sets of � and �. More

than 20 cycles of spatial waves simulated using more than 4000 time cycles were used in the

experiment to obtain the results. The �gure shows that the numerical and analytical estimates

agree with each other.

ECONOMIC DESIGN OF MODEL DISCRETIZATIONS

The space and time discretizations used in a computer model should depend on the economics

related to the costs and bene�ts of model runs. The cost is assumed to consist of; (1) the capital

cost associated with a model setup, which is mainly the cost of a computer system with the

required disk space and (2) the cost of running the model for a given time. The bene�ts consist

of the sum of all the bene�ts and liabilities of knowing the water levels or the discharges with a

certain accuracy. It is not easy to carry out a single cost bene�t analysis for all private and public

uses. However, the following description will help to understand the parameters associated with

such an analysis.

The initial cost of setting up a model run includes the cost associated with the equipment

needed for data storage. The time dependent portion of data volume is proportional to MNns

in which M;N = the number of spatial discretizations in X and Y directions; ns = the number

of time slices at which data is stored. The volume of initial condition data is negligible. Since

MN = A=(�x �y) in which A = area covered by the model, and ns = Ts=�ts, it can be shown

that

C = csnsMN =
csTsAfk

2

2 s�2
(42)

in which, C = data storage capacity needed for time dependent data in Bytes; cs = data storage

in bytes needed to store information about one cell for one time slice; Ts = period of simulation.

 s = f�ts is based on the time interval �ts at which output data are saved. For a MODFLOW

model using basic, river, drain and well packages for example, cs � 46 Bytes/cell/time step in

single precision for the input data, and 230 Bytes/cell/time step for the output data. At a cost

of $0.33 per Mb of disk storage or $6000 for a 18 GByte drive, the cost of setting up the model,
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for input data alone, is 15 �10�6 dollars/cell/time step. C in (42) can also be computed using

a previous model run with known C0,  s0 and �0.

C = C0

 s0�
2
0

 s�
2

(43)

If for example, � and  s are halved, the equation shows that the storage required becomes 8

times. In equation (42), f and k correspond to the smallest details in the physical system studied

using the model.

An expression for run time can be derived similarly. In order to make the result machine

independent, the computational load is computed in 
ops instead of computer run time. The

computer speed measured as the number of 
oating point operations per second (
ops/s) can

be obtained for many computers. The computer run time as a computational load for the �nite

di�erence method is (Lal, 1998)

tr = crntMN =
crTsAfk

2

 �2
=
crTsAfk

2

2��4
(44)

in which, tr = computational load in 
ops; nt = number of computational steps; cr = the number

of 
oating point operations required per cell per time step. Run time for any machine can be

computed when the computational load and the machine speed are known. For a Sun Sparc 20

and a Sun Ultra 2 used for the tests, the speeds are 4.1 and 13.8 M
ops respectively. Dongarra

(1998) publishes a list of run times for many of the computers. Values cr = 15.7 and 28.2

K
ops/cell/time step can be obtained for explicit and successive over relaxation (SOR) models.

A value of cr = 14.8 K
ops can be obtained for a MODFLOW model using basic, river, drain

and well packages and evapotranspiration. For a MODFLOW model with 179 � 164 cells and

365 time steps for example, tr = 159 �109 
ops. Run time in hours is obtained by dividing tr

by 4.1 M
ops for a Sparc 10 to give 10.8 Hrs. tr can also be obtained using tr0, �0 and  0 from

a previous model run.

tr = tr0
 0�

2
0

 �2
(45)
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Equation (44) for run time, and equation (11) for model error can be combined to obtain a

relationship between them by eliminating �. Such a relationship is useful in understanding the

cost-bene�t consequences of running a model with di�erent time steps or �. The error versus

run time curve can be used with unit costs for run time and numerical error to obtain the optimal

point on the curve at which the marginal gains of improved accuracy and increased run time are

the same. Figure 8 shows such curves corresponding to di�erent levels of spatial discretization

representing di�erent sizes of input data sets. The �gure is obtained for the MODFLOW example

with 179� 164 cells and 365 one day time steps requiring 0.5 GB of input data as a base run. The

base run is based on a 5% accurate spatial representation (� = 1.1), and di�erent computational

loads correspond to di�erent time steps or �. In the �gure, a very coarse spatial discretization

such as � = 1:6 needs only a small storage space, 0.24 Gb, when computed using (43). But such

a model can only reach a limited level of accuracy even with a large run time. With a very �ne

spatial discretization such as � = 0.2, a large data storage space (15.1 Gb) is needed for the input

data set, but a high level of accuracy can be reached only with a large run time. Unfortunately,

unless large run times are used, it is not possible to achieve high levels of accuracy with these

�ne spatial discretizations.

Curves shown in Figure 8 only consider the variation of the run time and the computational

error, and not the accuracy of representation of the solution. It is therefore necessary to maintain

limits such as �; < 1.6 to maintain an acceptable level of accuracy. When the  value exceeds

the limit for example, the discretization can only represent Fourier components with periods  = 0

times as long, in which  0 = 1.6, resulting in the suppression of higher frequencies. The optimal

� for equally accurate space and time representations is given by (16).

This relationship between the model error and the run time can be simpli�ed when � is small

by eliminating higher order terms in the Taylor series. Assuming that �T � (fT ) �2� for implicit

2-D models as explained in (15), this relationship becomes

�T tr =
crTsAfk

2 (fT )

2�2
=
tr0 0�

2
0 (fT )

2�2
(46)
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Figure 8 is obtained using (46) and assuming fT = 1. The relationship between tr and �T in

the �gure is very similar to that obtained by Lal (1998) for various overland 
ow algorithms. To

obtain an economically optimum time step for �, consider the following simple expression for the

total cost of a model run.

P = C pd + tr pr + �T pe (47)

in which, pd = the cost of input and output data storage in $/Mb; pr = cost of running the

computer in $/
op; pe = the liability associated with making an additional error, measured in

$/ percentage point in the solution. The optimal run time and � for which the cost is minimum

is the point of tangent of the error versus run time curve and the straight line describing the

marginal cost line. At this point,

tr =

s
crTsAfk

2(fT )

2�2

s
pe

pr
(48)

�T =

s
crTsAfk

2(fT )

2�2

s
pr

pe
(49)

� =

vuutcrTsAfk
2

2(fT )�6

s
pr

pe
(50)

The fact that crTsAfk2 = tr0 0�
2
0 in (46) can be used to simplify the above equations when pre-

vious runs are available. If pe=pr = 36, tr0 0�
2
0 = 1700 G
ops, � = 0.8 and fT =1 are assumed

in Figure 8, tr = 219 G
ops, �T = 6.1% and � = 5.5 can be obtained using the equations. This

is equivalent to a run time in a Sparc 20 of 219/4.1 = 15 Hrs. If the cost of a run is doubled,

the equations show that the time step has to be increased by about 40%, if the loss of accuracy

of the high frequency component can be tolerated.

APPLICATIONS

Two applications are presented in the paper. The �rst application demonstrates the use of the

methods developed earlier to understand the results of an existing model application in South

Florida. The second application shows the steps needed to select discretizations for a groundwa-

ter model.
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Application to an existing model in South Florida

A number of hydrologic models are used in South Florida to solve problems of various space and

time scales. These models are based on the same governing equations, and have many simi-

lar characteristics. The South Florida Water Management Model (SFWMM) (SFWMD, 1997,

Fennema, et al., 1994) developed by the South Florida Water Management District (SFWMD)

is one of the regional models used in the area. SFWMM is a physically based overland and

groundwater 
ow model based on the di�usion 
ow assumption. It simulates 
ow over a very

large part of South Florida. The grid used in the model is a 3.2 km (2 mile) square grid, and the

time step used is 6 hrs. The time series data for the boundary conditions and the source term

are provided to the model at 1 day time steps. In order to evaluate the validity of the di�usion


ow assumption in the model �rst, consider somewhat extreme values of water depth h = 1 m,

and slope S0 = 2{5�10�5 in the Central and Southern Everglades during wet periods. These

values can be used to compute the wave period of the shortest Fourier component that can be

simulated using Tp = 30
q
(h=g)=S0 � 4 days, as suggested by Ponce (1978). This equation is

based on a maximum amplitude error of 5%. The equation shows that the di�usion assumption

is valid unless events of shorter duration are simulated. If however the slopes are large, and the

depths are low as in many other areas, the model can simulate events of shorter duration using

�ner discretizations.

The 3.2 km (2 mi) grid and the 6 hr time step in the SFWMM can represent various Fourier

components in the solution with various accuracies. Table 4 shows maximum errors of type A of

di�erent Fourier components represented in the SFWMM. Subjected to a 5% maximum error, the

SFWMM can represent Fourier components of wavelength as small as 18 km and period as small

as 5.7 days. Using a typical high value of K = 250 m2
=s for overland 
ow in the Everglades, a

wave length of 18 km is associated with a wave period of 2.5 days according to f = 2Kk2. The

time step required to represent a wave form of period 2.5 days with a maximum error of 5% is

approximately 0.4 days. In the case of groundwater, K = 8 m2
=s, and the wave period is 77

days. This value suggests that it is su�cient to provide time series data at 14 day intervals for
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groundwater 
ow modeling. Any high frequency component in the ground water 
ow created by

daily data is lost due to an error of type (B) unless more spatial grid points are added.

The numerical error in the �nal model output can be due to a combination of errors in vari-

ous steady and unsteady state stress components. Consider a speci�c water level 
uctuation of

amplitude 1 m and period 6 days near a canal as an example. The amplitude at a distance of 6.4

km or two cells is computed by �rst obtaining k using f = 2Kk2 as 1:557 � 10�4s�1 and then

using (18). The amplitude at the distance is e�kx = 0.37 m. Assuming that � = k�x = 0.5,

� can be shown to be 0.52. Since � > 0.25, it can be seen that an explicit model is unstable

under the conditions. For an implicit model, the error is approximately (1=2)kx�2� or 6.5% of

the amplitude, the absolute error is 6.5% of 0.37 m or 24 mm. The percentage error in discharge

for this case is also approximately 6.5%. The error is largest when fT = 1, or at a distance of 7

km.

The error in the rain driven water level 
uctuations is proportional to the rainfall intensity. In

South Florida, this is the largest driving force for hydrology, and also the largest potential source

of error in models. For a stationary rainfall pattern described by a period of 12 days and wave

length 18 km for example,  I = fI�t = 0.524, and the error �s = 13.6% according to (39).

For the stresses induced by this rainfall, � = 1.1, and � = 0.52 which gives �T = 6.7% when

using fT = �=4 and (12). The total numerical error due to both source term and di�usion term

computations as a result of rain driven 
ow can now be computed using (41) to give 15.2%. If

the wave length of the rainfall density pattern is 18 km of less, the rainfall data has to be col-

lected with a spatial resolution of 3.2 km to maintain a <5% error in the input data set. When

rainfall data is collected at a lower resolution, the model will contain only the corresponding lower

frequency components. In South Florida, short duration small scale rains account for a large part

of the total rain, and have to be represented accurately to increase the accuracy of model runs.

To demonstrate the use of the SFWMM to simulate water levels near a pumping well, use
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Table 2 and select �x
q
(f=K) < 1.4 for the error in the center cell to be less than 5%. With

3.2 km cells and K = 8 m2
=s for ground water, this corresponds to a pumping cycle of period >

48 days. The example shows that heads computed near a well have large errors except in cased

where the pumping rates change extremely slowly. Table 1 shows how the amplitude decay to less

than 0.5% after 5 cells. The steady state error is less that 1.1% of the steady state drawdown of

the center cell.

When the numerical error is needed at a given point in the model, the �rst step is to �nd the

sources of the stresses. When the sources are found, principle of superposition can be used to

�nd the errors due to each of the stresses assuming the governing equations to be linear. In many

parts of the Everglades, stresses are mainly due to rain and canal level 
uctuations resulting from

operations.

An example problem showing important steps in discretization

The steps useful in determining the discretization for a new model are explained below using a

2-D groundwater model example. Assume that an implicit model is to be set up for groundwater


ow. If the model is to simulate Fourier components as small as 200 m with a 1% accuracy, and

that there is a speci�c need to limit the computational error of this component after propagating

50 m from the boundary to 50% of the local amplitude. Assume also that the disturbances are

1-D, and travel along an axis. Using K = 100m2
=s for groundwater 
ow,

A. For a < 0:1% spatial discretization error in 1-D, pick � � 0.16 using (5).

B. Compute k = 2�=� = 2�=200 = 0:0314 which gives �x = �=k = 5:1m. Using f = Kk
2,

compute f = 0:0986s�1. This represents a wave period of 64 s.

C. Compute fT = kX = 1.57 as a measure of the extent of evolution of the disturbance. For

a 10% error, use (12) for an implicit model to compute � as 2.38 which in turn gives �t

as 6.1 s when using � = K�t=�x2.

D. Check if this �t is small enough to represent 64 s period waves by computing  = f�t =
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0.6 which corresponds to 1.4% maximum error when using (5). If this is not assumed to

be acceptable, �t has to be reduced until the error becomes small.

E. Equation (44) shows that the computational load for modeling an area of 250000 m2 for a

period of 1 day is crTsAfk2=(2��4) or 104.5 G
ops when using cr = 14.8 K
ops. With

a machine speed of 4.1 M
ops, the run time is 7.1 hrs. To reduce the run time slightly,

relax the 50% error in C, and redo the steps. If the run time is extremely excessive, give

up trying to represent 200 m long wave pro�les with the high accuracy, and increase �x.

To get a 1 hr run time, assuming � to remain constant, tr � 1=�4 based on (16) and (45)

can be used to obtain �x = 26 m and �t = 16 s. Step E can also be simpli�ed using the

error versus run time relationship shown in (46).

For most problems, the �rst step is to determine the spatial discretization required to represent

the water surface pro�le created by the boundary or source term disturbance. The lower bound of

the numerical error gets �xed once the spatial discretization is �xed. Time step for the problem

is selected to make sure that the run time and the numerical error for the problem are at a proper

balance. The equations used in step C have to be modi�ed depending on the problem.

CONCLUSIONS

In this paper, the use of numerical errors and computer run times in deciding optimal spatial and

temporal discretizations of overland and groundwater 
ow models is demonstrated. The numeri-

cal errors are classi�ed into three di�erent groups depending on the way they are introduced into

the solution. Analytical expressions are derived to compute the maximum numerical errors and

the run times of various 1-D and 2-D numerical models using non-dimensional space and time

discretizations � and �. Stresses and errors induced by canal level 
uctuations, variable rainfall

patterns and variable well pumping rates are computed. Both steady and unsteady state cases

were studied. Numerical experiments were used to prove the validity of the expressions under the

stated conditions.

The study shows the need to have su�cient spatial discretizations and matching temporal
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discretizations if a given Fourier component is to be represented accurately in the model. It also

shows that the run time and the data volume increases as the size of the this smallest Fourier

component is reduced. Results show the existence of an optimal time step at which a marginal

increase in run time is balanced by a marginal loss of accuracy, both measured in same units.

Such an optimizations is useful specially in the case of implicit models with which a wide range

of time steps can be used with no stability problems. The analytical expressions derived for

numerical errors and run times are in dimensionless form so that they can be used to analyze

existing models or develop future models. Some practically useful equations obtained during the

study are summarized in Appendix A.
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APPENDIX A

A Summary of practically useful equations

Table A.1: Practically useful formulas in approximate form. In the equations, f = frequency of

the disturbance in water level; K = Tc=sc = transmissivity/storage coe�cient for ground water


ow.

Equation Reference

X

q
f=K = 4.3 X is the distance at which a 1-D disturbance

of frequency f would decay to 5% of the

amplitude.

�x = 1:1
q
K=f �x gives the spatial discretization needed to

represent a water surface pro�le with 5% ac-

curacy. The pro�le is created by a distur-

bance of frequency f .

�x = 0:5
q
K�d=f �x needed to represent the same spatial dis-

cretization with a �d % accuracy.

K�t=�x2 = 0:14 �t gives the time step needed if the numer-

ical error is limited to 5% of the disturbing

amplitude.
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�x
q
f=K < 1.4 �x gives the size of a square cell needed

to solve the amplitude of a well 
uctuation

with a maximum error of 5% of the local

amplitude.

�x
q
(f=K) = 5 gives the largest �x that can be used to

model a pumping well (error > 40%).

r

q
f=K = 2:75 r is the radius at which amplitude of a well

with r̂w = 0:5 reduces to 5% of the ampli-

tude of the well.

� = 2:07 exp(�0:726r=�x) � gives the numerical error of a steady state

well as a percentage of the drawdown.

C = csTsAfk
2
=(2 s�2) data storage capacity needed to run a model

for an area A for a time period of Ts focusing

on frequency f and wave number k.

tr = crTsAfk
2
=(2��4) run time or computational load for a mode

run.
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Table 1: Amplitudes of water level 
uctuations given by (28) for various well sizes r̂w =

ac�x
q
(f=K) representing various discretizations. Values of K0(r̂)=(r̂wK1(r̂w)) are shown in

the table.

r̂

r̂w 0.01 0.05 0.1 0.5 1.0 2.0 5.0 10.0

0.01 4.722 3.115 2.428 0.925 0.421 0.114 0.004 1.8 �10�5

0.05 3.128 2.438 0.929 0.422 0.114 0.004 1.8 �10�5

0.1 2.463 0.938 0.427 0.115 0.004 1.8 �10�5

0.5 1.116 0.508 0.137 0.004 2.0 �10�5

2.0 0.407 0.013 6.0 �10�5
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Table 2: Variation of �w, the error in amplitude as a percentage of the exact amplitude, and Cc,

with dimensionless �x for a square mesh.

�x
q
(f=K) 0.01 0.02 0.05 0.1 0.2 0.5

Cc 1.0000 0.9999 0.9997 0.9990 0.9967 0.9844

�w (%) 4.200 10�7 5.130 10�5 1.351 10�4 1.508 10�3 1.564 10�2 0.289

�x
q
(f=K) 1 2 5 10 20

Cc 0.9523 0.8886 0.5640 0.2563 4.3228 10�2

�w (%) 2.13 11.1 43.6 74.4 95.7
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Table 3: Comparison of values of �w obtained analytically and using the MODFLOW model.

�x
q
(f=K) 0.54 1.53 6.10 8.63

�w (analytical) 4% 6% 70% 79%

�w (MODFLOW) 4% 5% 71% 82%

� 0.27 0.76 3.05 4.31
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Table 4: Characteristics of various 1-D and 2-D harmonics that can be represented by using a

3.2 km (2 mile) grid cell and a 1 day time step.

Wave length (1-D) (km) 41 18 13 6 4 19

Wave length (2-D) (km) 57 25 18 8 5 27

Max. error (%) 1% 5% 10% 50% 100% 4.5%

Wave period (Days) 12.8 5.7 4.1 1.8 1.3 6

Max. error (%) 1% 5% 10% 50% 100% 4.5%
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DEFINITION OF VARIABLES

Variable De�nition

A area simulated by the model (m2).

C data storage capacity needed to run a transient model.

cr number of 
oating point operations per cell per time step (
ops).

cs data storage needed to store information abou one cell for one time slice (Bytes).

fI frequency of the rainfall pattern.

g gravitational acceleration.

h water depth, (m).

H water levels or water head (m).

H� error in the steady state solution near a well.

K Tc/sc for groundwater 
ow, h
5

3=(nb
p
Sn) for overland 
ow, m2

=s.

K0;K1 modi�ed Bessel functions of type 0 and 1.

r radial distance from the center of a well.

r̂ = r

q
(f=K) dimensionless r.

r̂w well radius in dimensional form.

S source term representing rainfall and evapotranspiration.

sc storage coe�cient

T time during which a given harmonic evolves, (s).

Tc transmissivity, m2
=s

Ts period of simulation of the model.

tr computational load or computer run time for a model.

x; y; z distances along x; y; z coordinate axes, (m).

X distances at which a disturbance is measured, (m)

� time weighting factor in the weighted implicit scheme.
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Variable De�nition

� K�t=�x2, dimensionless time step.

�A area of a cell, (m2).

�ts time interval at which the output data is saved (s).

�x size of a square cell.

�Q numerical error in discharge as a percentage of discharge.

�s numerical error due to the computations associated with the source term.

�T numerical error as a fraction of the local amplitude.

� dimensionless spatial discretization de�ned as k�x.

 a dimensionless time discretization de�ned as f�t.

 I a dimensionless time discretization de�ned as fI�t.

 s a dimensionless time discretization de�ned as f�ts.
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